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A remark on symmetry of stochastic dynamical systems 
and their conserved quantities 

Sergio Albeveriot and Shao-Ming Feit 
Institute of Mathematics. Ruhr-University Bochum, D-44780 Bochum, Germany 

Received 24 April 1995 

Abstract. The symmetry properties of stochastic dynamical systems described by a stochastic 
differential equation of Stratonovich type and related conserved quantities are discussed, 
extending previous results by Misawa New conserved quantities are given by applying 
symmetry operators to known conserved quantities. Some detailed examples are presented. 

Symmetries and conserved quantities have been discussed in the framework of Bismut's 
stochastic mechanics [l] and Nelson's stochastic mechanics, see, e.g., L2-41. More recently 
Cruzeiro er ul [5] and Nagasawa 161 have discussed stochastic variational principles and 
associated conserved quantities in the theory of Schrodinger processes (Euclidean quantum 
theory, in the sense of Zambrini, see also 171). In [SI (a stochastic version of [9]) a theory 
of conserved quantities related to a stochastic differential equation of Stratonovich type has 
been presented, without referring to either Lagrangians or Hamiltonians. In this paper we 
investigate the symmetry of the stochastic dynamical differential equation and the space of 
conserved quantities. We derive new results on conserved quantities which include the ones 
in [8]. It is shown that the conserved quantities are related to the symmetry algebra of the 
space of conserved quantities. 

We consider the stochastic dynamical systems of Stratonovich type [IO] described by 
the following n-dimensional vector-valued stochastic differential equations: 

where xr is a R"-valued stochastic process, wr = is a R"-valued standard Wiener 
process, b = (b'):=, and g, = (gi)f=, are Rn-valued smooth functions, r = 1, . . . , m, 
satisfying restrictions at infinity allowing the existence and uniqueness of solutions of (1). 
with given (deterministic or stochastic) initial condition xll,=o = xg. Let 3 E C2(W x Et). 
A function I E 3 is called a conserved quantity of a stochastic dynamical system (1) if it 
satisfies 

A , [ ( X , , ~ ) = O  Z\,Z(X,,~)=O r = l ,  ..., m (2)  
where AI = &+c:,l b'$ and Z\r = c:=l g:&, when xr satisfies (1). By Ita-Stratonovich's 
formula equation (2) implies that dl(x,, t )  = 0 and Z ( x r , t )  = constant holds along the 
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diffusion process xf, the constant being independent of t ,  but possibly depending on the 
initial condition xa. If the initial condition xo in (1) is taken to be deterministic, then I is 
a deterministic quantity independent of time. 

In investigating the symmetry of the stochastic dynamical process (I), we would like 
to distinguish between the symmetry of the stochastic differential equation (1) and the 
symmetry of the space of conserved quantities. We first consider the former. Let E > 0 
and = E 3. 

Theorem 1.' For E sufficiently small the stochastic differential equation (1) is invariant 
under the following transformations: 

S Albeverio and S-M Fei 

xf + xf + ~ ~ ' ( x ~ ,  t) i = I ,  . . . , n (3) 

if the [ ' (x, ,  r) satisfy 
n 

Atci(x,, t )  - c{'(x,, t)ajb'(x,, t )  = 0 ' 

j=l  

n (4) 
&ti(xt, r) - <'(xt ,  t)ajg:(xr, t )  = o r = 1,. . . , m. 

j=1 

Proof: 

d(xj + € 5 ' )  = dx; + €de' = b'(& + €5, t)dt + cg:(xf +E<,  t) o dw: 

Under (3) equation (1) becomes (writing as a shorthand for ( ( x r ,  t ) )  
m 

,=I 

with 6-l o(6) + 0 as E $0. That is 

On the other hand, by the formula for Stratonovich differentials we have 

Combining the above two equations we obtain equations (4). 0 

all belong to 3. Then an operator S = Cy=, a'aj +soar 
(acting on Cl(W x R)-functions) is by definition a symmetry operator of the infinitesimal 
invariance transformation (3) of the stochastic equation (1) if S satisfies, on C'W x R) 

(5) 

Let a', i = 1,. . . , n and 

[s, x i ]  = e' = a' . ,  

where [ ,  J is the Lie bracket and 5' satisfies equation (4). 



Remark on Symmetry of stochastic dynamical systems 6365 

For the symmetry related to the space of conserved quantities of the stochastic dynamical 
process (I), we consider a linear operator L satisfying the following commutation relations 
on C'@" x R): 

m m 

[A,,L] = T A , + E T ' d ,  [&,L]= R , A , + z R , u d ,  r = 1 ,..., m (6) 
' 7 4  c(=l 

where T, T,, R,, RF E F. Let Z 
space of the conserved functionals of the process. We have: 

Theorem 2. 
LZ E Z. 

Prou$ As I E Z, Z satisfies equation (2). From (6) we further have A,(LI)  = 0, 
0 

{Z(xz, t)ldZ(x,, t )  = 0 when xl satisfies (l)] be the 

For Z E Z and L satisfying relation (6), LZ is also a conserved quantity, i.e. 

&&I) = 0 ,  r = 1,. . . , m. Hence LZ E Z. 

Let 1: denote the set of all operators L satisfying (6). 

Property (i) is obviously as 
m 

[At,aiLi + ~ L z l  = (UITI  +a~T2)Ar + E ( a ~ T p a l  +uzT;)& 
0=I 

and 

By a direct calculation we have, on C1(W x W): 
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where the linear property of the operators LI and Lz has been used. Therefore we get 
[ L I ,  Lz]  E L. The Jacobi identity (iii) is satisfied as L E L are linear differential operators. 

0 

From Theorem 2 we have that the space of the conserved functionals admits the 
symmetry algebra 13 in the sense that it is invariant under any L E 13. The space Z is 
a representation of the closed algebra L. We call the elements of C 'symmetry operators'. 

Now we consider a subalgebra LO of C with T' = Q = 0, R," = 0. for 01 # r and 
R: = T in relation (6). That is, for LO E LO, on C'w x R) 

[ A , ,  LO] = T A r  [A,, LO] = T A r  r = 1 , .  . . ,m.  (7) 

Let LO be of the form Lo '= Cy=, Ai& + Bar with A', i = I , .  . . , n and B belong to 3. A 
direct calculation shows that relations (7) are equivalent to the following equations: 

A r B  = T (8) 
" 

AtA' - X A j a j b '  - Barb' - Tb' = 0 
j=1 

and 

& B = O  r = l ,  ..., m (10) 

as operators on C' @?' x R). 
We remark that in general a symmetry operator of the space Z is not a symmetry operator 

of the infinitesimal transformations of the stochastic differential equation. But when B = 0, 
then the equation set (8x11) reduces to the equation set (4) by replacing A[ with a'( = 5 ' )  
and C:=l A'ai is both a symmetry operator of the infinitesimal invariance transformation 
of the stochastic differential equation and for the space Z of conserved quantities. 

Theorem 4. Let Lo = Cy=l A'& + Bat E LO. Then 

n 

I ( X r ,  t )  = c aiA'(Xr, t )  + a, B(xr,  t )  - T (Xr, t )  + Lo@ (xi, t )  (12) 
'=I 

is a conserved quantity of stochastic dynamical system (1) (i.e. for xr satisfies (l)), when 
$ E F satisfies 

n 

Lr4(x,,t) + C a i g f ( x , , r )  = o  r = 1, .. . ,m (13) 
i=l 
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We have (dropping everywhere, for simplicity, the arguments x,, t) 
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Prooj! 

ArZ = Ar (g &Ai)  + AI(Lo@) + Ar(arB - T )  

where equations (8)-(11), (13) and (14) have been used. Therefore by definition Z(xr, t )  is 
a conserved quantity. 

Theorem 4 is a generalization of that presented in [8 ] ,  not only because of the ex&a term 
8, B - T ,  but also because of the presence of B in the symmetry operator Lo. For the special 
case that b' = gi, or more generally gt = C(x , ,  t )bi ,  r = 1, . . . , m, V C(xr, t )  E F (these 
are the cases of the examples given in [SI), we see from (8) and (10) that arB - T = 0, 
hence these terms disappear in the expression of I(x, ,  t ) .  Even in these cases equation (12) 
is still a generalization of that in [SI as long as B # 0 in LO. 

For a more detailed discussion we consider several examples. 

Example 1. 
system 

Following [8] we consider the three-dimensional stochastic linear dynamical 

x: -x: x: -x: 

d [ : j = [  . ~ - x ~ ) d ~ + . [ x ~ - x ~ ) ; d . ; .  x: -x, xr -XI  (15) 
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In this case the existence and uniqueness of the solution is well known (see, e.g., [IO]). 
The system (15) has the properties g' = b', E?=, aig' = 0  and^ CL, aibi = 0. From 
equations (8)-(11) several solutions of LO satisfying (7) can be obtained with T = 0. For 
instance 

S Albeverio and S-M Fei 

3 
L~ = [ (X,Y+(X~)~+(X:)*]  Eai 

L~ = (x;.: + .,".: + x:x;) 

i d  

3 

ai 
i=l 

3 
L3= [ ( x ; ) " x ~ ~ x : , + ( x : ) " x ~ + x : ~ + ( x ~ ,  3 2  (x, 2 +x:)+3xrx,x,]  1 2 3  Cat. 

i=l 
By using theorem 4 we can deduce that the following quantities are conserved: 

Zo = constant (independent of the x i )  

1 2 3  z1 =z2=x* +x*  + x r  

z3 = 2 K X y  + (x:,2 + (Xx:)Z) + 7(x:x: + x:x: + x:x:, 

where Z1 is the conserved quantity obtained in [SI. 13 is a new conserved quantity for the 
system (15). 

As At and A, are linear operators, products of conserved quantities are still conserved 
quantities. Let us set 

I1 and Z; are then two simple non-trivial conserved quantities of the system (15). Symmetry 
operators map conserved quantities into conserved quantities. Under the actions of the 
symmetry operators Li, i = 1,2,. . ., we have, e.g., 

Z; = (Zs - 2Z:)/3 = x:x: i- x:x: +$x: . 

Loll = 311 LIZ1 = 3(Z? - zz;, 
Loz; = 21;. L2ZL = 31; 

3 In fact LO = Z, 8; and L2 = Z; Cl=, ai. In the present case r = 1 and 

on C1(R3 x R) functions. Let f be an arbitrary polynomial function on R2. Since 
L f(Z1, Z;) Cl ,  ai commutes with A, and A I ,  we have that L is a symmetry operator 
in LO (defined in (7)). Hence the system (15) possesses an infinite number of symmetry 
operators that are linearly independent. They constitute an algebra LO with commutation 
relations which can obviously be explicitly computed, e.g., 

[Lo, L11= 4L3 - L1 [Lo, LZI = 2L1 + L3 

on C'(Rn x R). As B = 0 in this example, the algebra LO coincides with the 
algebra generating the infinitesimal invariance transformations for the stochastic differential 
equation. 
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The following examples are designed to show the useful symmetry analysis on conserved 
functionals in stochastic dyn&ical systems. We start with a (unique) solution for small 
times and show that there are conserved quantities (functionals of the solution process) 
associated with it. 

Example 2. Let us consider the following stochastic dynamical system: 
dxi = b‘ ( X I ,  t)df + g‘ (x I ,  t) o dw, (16) 

with 

g‘ = X ~ K X ~ Y  + (x;)’ + - zan,-h 

where~n , m E 2, m # 0, and bo E B.. We have the .symmetry operators in CO satisfying 
(on cl@” x a)) 

with 
[A,, Li] = CA, [ 2 \ 1 ,  Lil = i = 1 , 2 , 3 ,  

and 

where A, = c;‘=, biai +.al and dI = cz=, gi&. 
A function + satisfying (13) is given by 

3 + 2 m  
3 

+ ( X I ,  t) = -- log (x:x:x:) + e2”‘8.,o 

for X; # 0, i = 1 , 2 , 3 .  From theorem 4 we have the conserved quantities 
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In this example the terms &B; - Ti. i = 1,2,3 appearing in (12) are zero. But as Bi # 0, 
the term Li@ still contributes extra terms to I f .  

It is 
straightforward to check that the symmetry operators (17) satisfy the SU(2) algebraic 
relations 

i, j ,  k = 1,2,3. 

S Aibeverio and S-M Fei 

The space of conserved quantities of the system (16) is SU(2) symmetric. 

[Li, L,] = E;& 

Example 3. The following example is a nonlinear model with 3,s - T # 0 in (12): 
I 

d (  ::)=:( : ) d t + t (  ~ ~ ~ ~ ~ ) o d w l  X : ( X : - X ; )  t > O .  (18) 

x,  xt 

For this system we have a symmetry operator LO E LO given by 

L,, = sa, = ix: + X: +$)a, 
satisfying 

1 
t 

[ A I ,  Lo] =TA,  = - (x; +$+$)At 

where 

@ satisfying (13) and (14) is given by @ = -3logt, t # 0. From theorem 4 we have, for 
x,  satisfying (18). 

Let us summarize the above. By investigating the symmetry of the space of conserved 
quantities for stochastic dynamical systems, we have established new relations for conserved 
quantities. We would like to indicate that although the conserved functionals are given by 
the elements of a subalgebra & of L, the space of conserved functionals itself admits the 
symmetry Lie algebra L. Let us consider (18), with A, and i1 given by (19), as an example. 
We consider the operator L =a(&, t)At +b(x,, Q(x,, t ) ,  b(x,, t )  E F. Noting that in 
present case [ A f ,  

[At ,  LI = A&,, t)Al + A ~ b ( x t ,   AI 
= 0, we have 

[AI,  LI = Ala(x,, t)Al + Z\lb(x,, Z ) ~ I  . 
Therefore L is a symmetry operator in L which maps I E Z to zero. However only when 
A,b(x,, 1) = A,u(xt, t )  = 0 and A1b(xl, t )  = A&,, t )  is L a symmetry operator in Lo, 
satisfying the defining relations (7). 
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